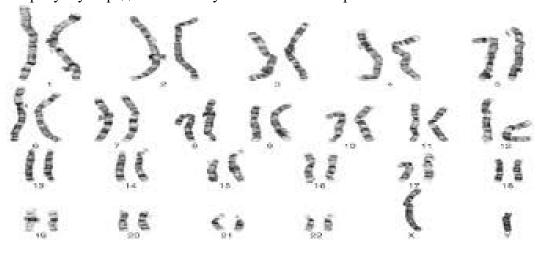

ПРИКАСПИЙСКАЯ МЕЖРЕГИОНАЛЬНАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ГЕНЕТИКЕ

10-11 КЛАСС ВРЕМЯ ВЫПОЛНЕНИЯ – 120 МИН.

Задание 1.

Сделайте подписи к рисунку и обозначьте:

- типы хромосом а-г
- структурные части хромосом 1-6 (центромера, первичная перетяжка, короткое плечо, длинное плечо, вторичная перетяжка, спутник, теломеры)



Типы хромосом человека

a	
б	
В	
Γ	
1	
2	
3	
4	
5	
6	

Задание 2.

По рисунку определите пол и укажите половые хромосомы

Пол	
Половые хромосомы	

Задание 3.

Синдром дефекта ногтей и коленной чашечки определяется полностью доминантным аутосомным геном. На расстоянии 10 морганид от него находится локус групп крови по системе ABO. Один из супругов имеет II группу крови, другой – III. Тот, у которого II группа крови, страдает дефектом ногтей и коленной чашечки. Известно, что его отец был с I группой крови и не имел этих аномалий, а мать – с IV группой крови имела оба дефекта. Супруг, имеющий III группу крови, нормален в отношении гена дефекта ногтей и коленной чашечки и гомозиготен по обеим парам анализируемых генов. Определите вероятность рождения в этой семье детей, страдающих дефектом ногтей и коленной чашечки и возможные группы крови их.

Задание 4.Что изображено на рисунке. Укажите 3'- и 5'-концы. Напишите антикодон, кодон мРНК и аминокислоту, которая закодирована этим кодоном.

Вторая позиция кодона

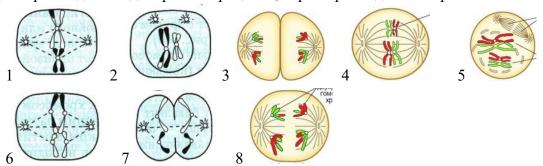
		כ	O	Α	G	
кодона		Phe	Ser	Tyr	Cys	C
ē	U	Phe	Ser	Tyr	Cys	CA
Ā	_	Leu	Ser	STOP	STOP	A
¥		Leu	Ser	STOP	Тър	G
•		Ļeu	Рго	His	Arg	C
Ĭ	C	Leu	Pro	His	Arg	C
₹	~	Leu	Pro	Gln	Arg	C A
ñ		Leu	Pro	Gin	Arg	G
позиция	_	lle	Thr	Aşn	Sar	5
	Α	lle	Thr	Asn	Ser	C
Первая	_	lle	Thr	Lys	Arg	CA
		Met	Thr	Lys	Arg	G
		Val	Ala	Asp	Gly	U
Ě	G	Val	Ala	Asp	Gly	C
	9	Val	Αľa	Gtu	Gly	Č
		Val	Ala	Gtu	Gly	G

Гретья позиция кодона

Задание 5.

В пробирке у молекулярного биолога находится фрагмент молекулы двухцепочечной ДНК следующего состава:

- 5'- CTGAATTCGGATCCAGGCCATAGTGGCC -3'
- 3'- GACTTAAGCCTAGGTCCGGTATCACCGG-5'


На сколько частей, какими способами и с помощью каких рестриктаз можно разрезать этот фрагмент молекулы двухцепочечной ДНК? Воспользуйтесь для решения данной задачи таблицей, в которой перечислены рестриктазы и расщепляемые ими последовательности.

Рестриктазы, активно используемые в генной инженерии и расщепляемые ими последовательности.

Рестриктазы	Участки распознавания и места разреза ДНК		
Bam I	5`-G-*G-A-T-C-C-3`		
	3`-C-C-T-A-G-*G-5`		
EcoR I	5`-G-*A-A-T-T-C-3`		
	3`-C-T-T-A-A-*G-5`		
Hind III	5`-A-*A-G-C-T-T-3`		
	3`-T-T-C-G-A-*A-5`		
Hae III	5`-G-G-*C-C-3`		
	3`-C-C-*G-G-5`		
Hpa II	5`-C-*C-G-G-3`		
_	3`-G-G-C-*C-5`		
Sma I	5`-C-C-C -*G-G-G-3`		
	3`-G-G-* C-C-C-5`		

Задание 6.

Назовите тип деления. Фазу каждого деления (1-8), количество хромосом и ДНК (nc), характерного для каждой фазы и процессы, характерный для этой фазы.

№	Фаза деления	Набор хромосом и ДНК	Процессы, характерные для данной стадии
1			
2			
3			
4			
5			
6			
7			
8			

Задание 7.

Установите соответствие

1. Ген	А – способ записи информации о последовательности	
2. Генетический код	аминокислот в белке с помощью последовательности	
3. Репликация	нуклеотидов в ДНК	
4. Транскрипция	Б – синтез мРНК	
5. Репарация	В – синтез белка	
_	Г – чередование азотистых оснований молекулы ДНК	
	Д – синтез ДНК	
	Е – участок ДНК, кодирующий один белок	
	Ж – чередование азотистых оснований молекулы мРНК	
	3 – восстановление поврежденных участков ДНК	

1	2	3	4	5

Задание 8.

«Сказка про драконов»

У исследователя было 4 дракона: огнедышащая и неогнедышащая самки, огнедышащий и неогнедышащий самцы. Для определения способности к огнедышанию у этих драконов им были проведены всевозможные скрещивания:

- 1. Огнедышащие родители всё потомство огнедышащее.
- 2. Неогнедышащие родители всё потомство неогнедышащее.
- 3. Огнедышащий самец и неогнедышащая самка в потомстве примерно поровну огнедышащих и неогнедышащих дракончиков.
 - 4. Неогнедышащий самец и огнедышащая самка всё потомство неогнедышащее.

Считая, что признак определяется аутосомным геном, установите доминантный аллель и запишите генотипы родителей.

Задание 9.

Подпишите представленные на рисунке хромосомные мутации.

Задание 10.

В генетике человека используется ряд методов. Какой из перечисленных методов дает возможность оценить степень влияния наследственности и среды на развитие признака?

- А. Цитогенетический
- Б. Близнецовый
- В. Биохимический
- Г. Дерматоглифический
- Д. Генеалогический